
' .
Systems & Processes Engineering Corp. 'SPEC Suite A 1406 Smith Road* Austin, Texas 7872 1

I
'I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I

' I

Final Report

DFT Algorithms for Bit-Serial GaAs Array Processor Architectures

Contract Number NAS5-30291

Prepared by:

Dr. Gary 6. McMillian
Systems & Processes Engineering Corporation (SPEC)

1406A Smith Road
Austin, Texas 78721

1

Prepared for:

NASA Goddard Space Flight Center
Greenbelt Road

Greenbelt, Maryland 20771

(IUSA-CB-383436) D P T ALGOBITHHS PUB U89-27361

BIT-SEBIhL GaAs bRRAP PBOCESSOR
ABCHlTKCTORBS Final Report ;Systems and
Processes Engineering Corp.) 7 8 p CSCL 099 G3/61 0156639

Uaclas

August 19, 1988

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

ABSTRACT

Systems & Processes Engineering Corporation (SPEC) has developed an
innovative array processor architecture for computing Fourier transforms and
other commonly used signal processing algorithms. This architecture is
designed to extract the highest possible array performance from state-of-the-art
GaAs technology. SPEC'S architectural design includes a high performance
RISC processor implemented in GaAs, along with a Floating Point Coprocessor
and a unique Array Communications Coprocessor, also implemented in GaAs
technology. Together, these data processors represent the latest in technology,
both from an architectural and implementation viewpoint.

SPEC has examined numerous algorithms and parallel processing architectures
to determine the optimum array processor architecture. SPEC has developed an
array processor architecture with integral communications ability to provide
maximum node connectivity. The Array Communications Coprocessor embeds
communications operations directly in the core of the processor architecture.

A Floating Point Coprocessor architecture has beengefinedihat utilizes Bit-Serial
arithmetic units, operating at very high frequency, tOpe-&rm floating point
operations. These Bit-Serial devices reduce the device integration level and
complexity to a level compatible with state-of-the-art GaAs device technology.
Operating at clock frequencies in excess of 1 GHz, these Bit-Serial units compare
favorably to parallel units implemented in silicon technology, while providing
inherent radiation hardness and superior speed-power product of GaAs.

SPEC has selected Sun Microsystems' Scalable Processor ARChitecture (SPARC)
as a basis for the high speed RISC processor. The SPARC is ideally suited for
array processor applications, with a large register set, efficient instruction set,
and simple implementation. The SPARC RISC processor has previously been
implemented in a silicon gate array, with the design requiring less than 20,000
gates. This compares very favorable to other RISC processor implementations,
which have required many times the device complexity.

SPEC has selected Vitesse Semiconductor's enhancementldepletio mode process
for design implementation. Vitesse's GaAs foundry is now offering G n ard Cell
design capability up to 20,000 gates, which offers the best cost and performance
alternative, and ensures success in a Phase I1 development activity.

In selecting SPARC basis for the processor, SPEC has ensured a high level of
software support and design activity for successfid commercialization of the
product in Phase 111. At the end of Phase 11, SPEC will have demonstrated both a
high performance DFT array processor architecture and GaAs RISC design.

ii

I
I
I SPEC

Systems & Processes Engineering Corporation

Table of confencs

1.0 Introduction . 1

2.0 SystolicArrayTopologies . 3
2.1 Two Dimensional Plane Topology .
2.2 Three Dimensional Plane Topology .
2.3 Linear Topology . 4
2.4 RingTopology . 8
2.5 FFT Specific Topology .
2.6 Dynamic Reconfiguration and Data Routing 11

3.0 Systolic Array Algorithms . 12
3.1 Overview . 12
3.2 Fourier Transform Algorithms . 12

3.2.1 Cooley-Tukey Radix-2 and Split-Radix FFT 13
3.2.2 BlockDFT . 23

3.3 Other Signal Processing Algorithms . 30
3.3.1 Kalman Filter . 30
3.3.2 Digital Filters . 30

3.4 Review of Signal Processing Algorithms . 31

4
4

8

4.0 GaAs Processor Architecture . 32
4.1 Architecture Overview . 32
4.2 Dedicated Bit-Serial DFT Processor Elements 34
4.3 RISC Signal Processor . 37

4.3.1 SPARC Processor . 38
4.3.2 Bit-Serial Floating Point Coprocessor 43
4.3.3 Bit-Serial Array Communications Coprocessor 46

5.0 System Simulation . 60
5.1 Model Overview . 60
5.2 Implementation . 60

6.0 Proposed Phase I1 Implementation . 63
. 63

6.1.1 GigaBit Logic, Inc . 63
6.1.2 Vitesse Semiconductor Corporation 65
6.1.3 TriQuint Semiconductor, Inc . 66
6.1.4 Other Foundry Sources . 67

6.1.4.1 Texas Instruments . 67

6.1 Foundry Processes & Capabilities Review

iii

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

6.1.4.2 McDonnell Douglas Corporation 67
6.1.4.3 Rockwell International Corporation 67

6.2 Custom vs Standard Cell vs Gate Array Approach 67
6.3 Demonstration Unit Design . 69

6.3.1 Hardware Implementation . 69
6.3.2 Software Development . 69

References . 73

Bibliography ...,,,.......,...................................78

iv

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

List of Figures

Figure 2-1 Two Dimensional Array Topology .
Figure 2-2 Three Dimensional Array Topology .
Figure 2-3 Fault-Tolerant Linear Array Topology .
Figure 2-4 Ring Array Topology .
Figure 2-5 Fast Fourier Transform Array Topology . 10
Figure 3-1 Length-32 Split-Radix DFT Algorithm Representation 17
Figure 3-2 Generalization of Split-Radix DFT Node Arithmetic Operations 18
Figure 3-3 Single Processor Implementation of a DFT Butterfly 19
Figure 3-4 Multistage Processor Implementation of a DFT Butterfly 21
Figure 3-5 Length-16 Block DFT Array Processor . 25
Figure 3-6 Stage 1 Computation of a Length-16 Block DFT 27
Figure 3-7 Stage 2 Computation of a Length-16 Block D I T 29
Figure 4-1 Commercial Processor Architectures . 33

Figure 4-3 Systolic Array ComputationalNode . 39
Figure 4-4 SPARC Register Window Architecture . 41
Figure 4-5 SPARC Processor Architecture . 42
Figure 4-6 SPARC Floating Point Coprocessor Architecture 44
Figure 4-7 Floating Point Coprocessor Multiplication Unit 45
Figure 4-8 Floating Point Coprocessor Addition Unit . 47
Figure 4-9 Communications Coprocessor Overview . 48
Figure 4-10 SPARC Communications Coprocessor Architecture 49
Figure 4-11 Communications Coprocessor Register Architecture 51
Figure 4-12 Inter-Node Communications . 52
Figure 4-13 Communication Unit Register Architecture 53
Figure 4-14 Communications Coprocessor SEND & RECV Operation 54
Figure 4-15 Communications Coprocessor Load Instructions 55
Figure 4-16 Communications Coprocessor Store Instructions 56
Figure 4-17 Communications Coprocessor Branch Instructions 58
Figure 4-18 Communications Coprocessor Operate Instructions 59
Figure 5-1 Systolic Array Simulator (SAS) Functions . 61
Figure 6-1 Foundries Surveyed . 64
Figure 6-2 Phase I1 Development Program Objectives 70
Figure 6-3 VMEbus (9U) Compatible GaAs Systolic Array DFT Processor 71

5
6
7
9

Figure 4-2 Dedicated Bit-Serial Floating Point Butterfly Processor 35

V

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

List of Tables

Table 3-1 Single Stage DFT Processor Requirements. 20
Table 3-2 Multiple Stage DFT Processor Requirements. 22
Table 3-3 Parallel Processor Evaluation of the Transform X(A,b). 26
Table 3-4 Parallel Processor Evaluation of the Transform X(A,B). 28
Table 3-5 Block DFT Processor Requirements. 30
Table 4-1 Floating Point Arithmetic Operation Timing. 36
Table 6-1 Device Gate Count and Pin Count Estimates. 68

vi

I
I
I
I
I
I
I
I
I
I
I
I
1
1
I
I
I
I
1

SPEC
Systems & Processes Engineering Corporation

1.0 Introduction

Systems & Processes Engineering Corporation (SPEC) has conducted an in-depth
investigation of signal processing algorithms, with the goal of developing a high
performance, GaAs based, systolic array architecture suitable for
implementation of these algorithms. As a result of this study, SPEC has
developed an array architecture suitable for implementing a broad class of signal
processing algorithms, with possible application to other computing problems,
including computational physics and artificial intelligence problems.

The study has been concentrated on algorithms for computing the Discrete
Fourier Transform (DFT). The DFT has received considerable usage over the
years in applications ranging from seismic well-logging, image analysis, and
spectral analysis in the commercial and scientific sectors, to communications
signals intercept and sonar detection in the military sector. In many of the
applications, the computation of the DFT is very time critical. Real-time
applications involving image compression, digital Fourier spectroscopy, and
harmonic analysis require the transformation of high speed data signals by
specialized hardware capable of providing high system throughput and
minimum latency.

In addition to the Fourier transform, SPEC has investigated systolic array
implementations of Kalman filter algorithms, Finite Impulse Response (FIR)
algorithms, and image filtering algorithms.

The primary limitation, observed in all classes of algorithms, is node connectivity.
Solving the connectivity problem is key to the successfid implementation of a high
performance array processor. Therefore, SPEC has developed an inter-processor
communications architecture capable of providing flexible, high speed, and easily
programmable inter-node communications.

SPEC'S systolic array architecture features a GaAs implementation of a RISC
processor, floating point coprocessor, and array communications coprocessor. A
number of RISC architectures were evaluated for application to signal processing
and compatibility with the state-of-the-art in GaAs integrated circuit technology.

SPEC has selected the Sun Microsystems Scalable Processor ARChitecture,
SPARC, for implementation of the systolic array processor. This architecture
features a large register set, a flexible coprocessor interface, a simple instruction
set, and because of it's simplicity, can be implemented with near-term GaAs
integrated circuit technology.

1

I
1

I
I
I
I

SPEC
Systems & Processes Engineering Corporation

SPEC'S architecture also features very high speed, low gate count, bit-serial
arithmetic and communication units in the floating point and communication
coprocessors, respectively. Utilizing the very high speed of GaAs, currently with
clock rates in excess of 1 GHz, bit-serial units can be used to form the core of
complex arithmetic and communication units. A bit-serial VLSI architecture is,
in fact, ideal for implementation of the communication links between processors.
GaAs based bit-serial floating point arithmetic units will be of comparable
performance to highly parallel silicon floating point units, while maintaining the
inherent radiation hardness of GaAs and the approximately 1 O : l speed-power
product advantage of GaAs over ECL integrated circuits.

The core GaAs RISC processor and coprocessors will maintain complete 32-bit
external architectures. As a result, the processor and coprocessors will be
suitable for implementation in single processor designs, as well as the proposed
systolic array processor. This should significantly enhance the commercial
viability of the product.

After evaluation of the state-of-the-art in GaAs standard cell design and the
complexity of the processor architecture, SPEC is confident that the proposed
design can be successfully demonstrated in a Phase I1 program and successfiilly
commercialized in a Phase I11 program.

1
I
I

2

I
I
I
I
I
I
I
I
I
1
1
I
1
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

20 Systolic Array Topologies

A number of array topologies have been utilized in the past for interconnection of
multiple processors. Array processors have been configured in 2-D, 3-D, Ring,
Linear and Algorithm Specific topologies.

Data can be transferred between nodes through serial or parallel communication
links, through dual-ported random access memory (RAM), or through shared
(global) RAM. For arrays with connections between printed circuit boards, or for
nodes with more than one o r two communication links, implementation of dual-
ported or shared RAM is impractical.

Utilizing GaAs integrated circuits, very high speed serial communication
channels are realizable, with the principal speed limitation being the physical
link. In fact, by devising a communications coprocessor to buffer the data and
handle the physical link, the data transfer operation can be overlapped with the
execution of floating point or fixed point calculations in the processor and other
coprocessors.

The operation of array processors falls into two basic categories: Single
Instruction Multiple Data (SIMD) stream operation and Multiple Instruction
Multiple Data (MIMD) stream operation. In a SIMD processor array all
processors execute a common instruction stream, while operating on separate
data. In a MIMD processor array, each processor is capable of executing a
separate instruction stream while operating on unique data.

An example of a mesh connected SIMD processor is the Geometric Arithmetic
Parallel Processor (GAPP). The GAPP, is a array of l-bit processors, each
communicating with its nearest neighbor in a 2-D plane. NCR Corporation
currently manufactures a 6 x 12 processor array implementation of the GAPP
with a bibserial ALU and 128 bits of static RAM per processor.

Examples of MIMD machines include the Intel Hypercube array processor and
Inmos Transputer based array processors. The Intel Hypercube processor
features an array of standard 80386 processors with 80387 floating point
coprocessors connected in a 3-D array. The Inmos Transputer, which is a VLSI
32-bit processor with four 20 Mbit/sec serial communication channels available
for inter-processor communication, can be configured in an arbitrary array
topology. Inmos has developed the parallel processor programming language
OCCAM for programming the Transputer.

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

2.1 Two Dimensional Plane Topology

Two dimensional topologies are suitable for computing matrix operations. For
example, filtering of images using a local matrix transformation is ideally suited
for a mesh connected 2-D systolic array.

A diagram of a 2-D array is shown in Figure 2-1. In this implementation each
node processor communicates with its nearest neighbor through a high speed
communications coprocessor. The communications coprocessor buffers the data
and manages the physical interface between nodes.

Provisions can be made for failed processors to be mapped out of the array, with
communications routed around the failed node.

2 2 Three Dimensional Plane Topology

A systolic array processor configured in a 3-D array is shown in Figure 2-2. In
this configuration each node processor can communicate with its coplaner
nearest neighbor and its nearest neighbors in adjacent planes.

Each communication coprocessor manages six full-duplex communication links.
Data can flow in any of the six directions out of a node, and can flow in basically
any direction in the array; between planes, within planes, and a combination of
the two.

Each processor in the array can execute a portion of the algorithm, operating on
all or a subset of the data, or each processor can execute the complete algorithm,
operating on a fraction of the data.

23 LinearTopology

Pipelining of functional operations is usually accomplished with a linear array
topology, such as that shown in Figure 2-3. With this array configuration each
processor usually handles all of the data, performing one or more operations and
passing the processed data to the next node.

Redundancy in communication links is also shown in Figure 2-3. This link
redundancy serves multiple purposes: fault tolerance, increased throughput,
data separation, and others. Multiple links between nodes can also be utilized in
other array topologies.

An example of a node bypass is also shown in Figure 2-3. If a processor fails,
then the communications bypass link can be activated to map out the failed node.

4

SPEC
Systems & Processes Engineering Corporation

I
I

Full Duplex
Co m m u nicati o ns

Channels

I
I
I

I
I
I

Array Communications
Coprocessor

Node
Processor

Figure 2-1 Two Dimensional Array Topology.

5

SPEC
Systems i3 Processes Engineering Corporation

ACC

ACC
Plane n +1

I
I
I

Figure 2-2 Three Dimensional Array Topology.

6 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

Array Communications

Figure 2-3 Fault-Tolerant Linear Array Topology.

7

I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

SPEC
Systems & Processes Engineering Corporation

Also, if the algorithm dictates, the node bypass can also be used to rapidly transfer
data to a down stream processor. A node bypass link can easily be implemented
in other array topologies as well.

2.4 RingTopology

An example of a processor array configured as a ring is shown in Figure 2-4.
This topology is basically a linear array, with the ends connected. This short-
circuit can be utilized to transfer data between nodes over the shortest of two
paths, instead of one path in a linear array.

This topology also offers a degree of fault tolerance, with a failed node breaking
one but not both of the ring communication paths.

25 FFTSpecificTopology

While 2-D, 3-D, and linear array topologies can be utilized to compute almost any
conceivable algorithm, they generally are not optimized for a specific algorithm's
communications requirements. Algorithm specific topologies can be developed to
minimize inter-node communication requirements, i.e. each node only
communicates with nodes that are required for data interchange and no data
routing is required by a node processor.

An array topology optimized for a Radix-2, Radix-4, or Split-Radix Fast Fourier
Transform (FFT) is shown in Figure 2-5. In this array data flows from left to
right in the array, with each processor executing half of the operations required
at each stage of the FFT. (The topology shown represents a length-32 transform
which may be conveniently broken into 5 stages. A complete analysis is presented
in Section 3.2.1.)

Each stage of the length-32 FFT involves the computation of 16 "Butterflies."
Therefore, a highly parallel FFT' optimized length-32 systolic array could have up
to 16 processors per stage, with 5 stages for a total of 80 processors. Each
processor would have to communicate with each of the 16 processors in the
succeeding stage, i.e. have 16 serial communications links.

A more optimum design might employ 2 (4) processors at each stage, executing
8 (4) Butterflies and communicating with 2 (4) processors in adjacent stages,
respectively.

8

I
I
I
~I
~i
I
I
I
I
I
I
I
I
I
I
I
I
I
1

SPEC
Systems & Processes Engineering Corporation

Array Corn m u nicat io ns

JCoprocessor

Node - Processor

Figure 2-4 Ring Array Topology.

9

SPEC
Systems & Processes Engineering Corporation

I
I
I
I

Column 1 Column 2 Column 3 Column 4 Column 5

Figure 2-5 Fast Fourier Transform Array Topology.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

The proposed design will have 8 full-duplex communication links, with expansion
capability to 32 links. Thus, up to eight GaAs processors can be utilized at each
stage of a highly parallel FFT. (The total number of stages will be dependent on
the length of the transform.)

Other DFT specific array topologies will be discussed in detail in Section 3.2.

2.6 Dynamic Reconfiguration and Data Routing

Dynamic reconfiguration of an array topology can be easily accomplished by
severing existing communication links between nodes and reconnecting the links
in some other fashion with a digital switch.

As an alternative, data routing can be performed by an intelligent communication
coprocessor. Data can be packetized and routed between processor nodes by the
coprocessors. Each data packet includes a unique destination address along with
the data. As the data is passed from coprocessor to coprocessor, each coprocessor
examines the data packet address, determines the optimum path out of the
coprocessor to the destination, and routes the packet along that path. This
process continues until the data packet reaches the destination node.

This sophisticated routing methodology is very powerful, but has some draw
backs. For example, communication links can become overloaded causing delays
in transmission, and the coprocessor must be much more intelligent (and
therefore more highly integrated) to process the packetized data.

11

~

I
I
I
I
I
I
II
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

3.0 SystolicArrayAlgorithms

3.1 overview

A number of signal processing algorithms have been examined for suitability for
adaptation to high speed systolic array processors, including the Fourier
Transform, the Kalman filter, digital filters, and image processing filters and
related algorithms.

Generally, there are many computational approaches to each algorithm, with
each technique exhibiting selected advantages in terms of:

Memory Requirements
Relative Number of MultiplicatiodDivisiodAddition Operations
Number of High Level Functions, such as Sine and Cosine
Numerical Accuracy
Adaptability to Parallel Processing Systems

3.2 Fourier Transform Algorithms

Since the development of the original Fast Fourier Transform by Cooley and
Tukeyl, numerous techniques have been developed to compute the Fourier
Transform, including the basic Radix-2 algorithms,2-7 the Winograd (WFTA)
algorithm,8JJ the prime factor algorithm (PFA),lWl the Real-factor FFT,12 and
others.13-15 The Radix-2 and Radix-4 algorithms are probably the most widely
utilized transforms, and for most applications the most practical. The simple
"Butterfly" structure of the algorithms allows the transforms to be done
"in place", with intermediate results overwritten at the end of each successive
stage to provide maximum memory efficiency, and the regular structure of the
transforms allows a relatively simple software implementation. While the
WFTA, PFA, and Real-factor FFT are more computationally efficient, requiring
fewer total multiplications and additions, they are not as numerically well
conditioned as the Radix-2 and Radixd algorithms.

The primary objective of most Fast Fourier Transform (FFT) algorithms is to
reduce the total number of mathematical operations (or replace complex
mathematical operations, e.g. multiplication, with less complex operations, e.g.
addition) required to compute the transform. However, reducing the total number
of mathematical operations may be less important than other considerations,
such as: the flexibility in the values that the transform length, N, may assume;
the numerical accuracy required for the particular implementation; and the
possibility of doing the transform in place.

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

Some transform implementations are specifically designed to facilitate high speed
parallel and pipelined hardware implementations, often at the expense of
additional intermediate memory requirements or an increased number of
ma thema tical operations .
The basic Fourier Transform of the data sequence x(n) is defined by

;3c
N

N - 1 -j-nk
X(k) = c x(n) e 1

n = O

where x(n) represents an input data sequence, indexed by n, and X(k) represents
the output data sequence, indexed by k. The indices n and k are commonly
referred to as the time index and the frequency index, respectively. The time
sequence interval, At , is assumed to be constant. The length of the data array to be
transformed is denoted by the variable N. The transform equation is customarily
written in a more abbreviated form

N - 1

X(k) = c x(n) Cik 2
n=O

where the coefficient C represents the complex exponential shown in Eqn. (1).

A decrease in the computational complexity can be realized by changing the
indexing in Eqn. (2) to take advantage of symmetry in the evaluation of the
complex coefficient.

32.1 Cooley-"ukey Radix-2 and SplibRadix FTT

Let the index n be represented by n = 2p + q, where q = 0 , l and p = 0,1,2, ...,
(N/2 - 1). Substituting into Eqn. (2), we find

q-0 p=o

or

13

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

q - 0 P=O

4

where the s u m has been decomposed by a Radix-2 transform of the index n.

A similar procedure can be used to perform a Radix-4 decomposition of the index
p. Let the index p be represented by p = 4s + t, where t = 0, 1 ,2 ,3 and s = 0, 1,2, ...,
(N/8 - 1). Substituting into Eqn. (4), we now find

1 3 N8-1
(4s + t)k

X (k) = x C:k x(2(4s+t) +q)CN2
..

q = o t - 0 s = o

or
1 3 N8-1

X(k) = C: c C L x(8s + 2t + q) Ci!8
q = o t = o s-0

where the number of complex multiplications is given by N (N/8 4 2) = N2,
the same as in Eqn. (2).

Now consider the case N = 32, where X(k) is given by

e e

and
-jTsk 2%

sk
C4 = e

7

8

The complex coefficient, C, can only assume four values, f 1 or f j.

Multiplication by any of these four values can be readily implemented in software
or hardware without doing a hll complex multiplication (4 real multiplications, 2
real additions), because multiplication by f 1 is really only a change of sign at
most and multiplications by f j is only a change of sign and a swap. Both are
elementary Butterflies.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

Thus, the arithmetic complexity of the innermost loop of Eqn. (7) has been
substantially reduced. The number of full complex multiplications has been
reduced by a factor of four, a significant savings.

Similar Radix-2, Radix-4, Radix-8, or other higher radix decompositions can be
used on the length-N transforms to achieve similar savings in arithmetic
complexity .
Recently, a "Split-Radix" FFT has been reportedls-18 which is a combination of
Radix-2 and Radix-4 decompositions. It has been shown that the number of
multiplications and additions required for the Split-Radix FFT is less than the
number required for either a Radix-2 or a Radix-4 transform. While the software
implementation of the Split-Radix FFT is somewhat more complex than the
Radix-2 implementation, it is amenable to the same arithmetic reduction
programming techniques.

The Split-Radix FFT is based on the following decompositions of the even and odd
terms of Eqn. (1):

rv2-1

X(2k) = (x(n) + x(n + :)) C r k
n=O

lW4-1

X(4k + 1) = [(x(n) - x(n + f) - j (x(n + p) - x(n + +))I C i C r k 9
n=O

. - . .
3n 4nk X(4k + 3) = [(x(n) - x(n + t) +j (x(n + p) - x(n + 3!))] C, C,

n=O

This decomposition relates a length-N DFT to one length-N/2 and two length-N/4
DFTs with twiddle factorslg. Repetition of this decomposition process, for the N/2
and N/4 DFTs, generates the Split-Radix FFT in much the same way as the
decimation-in-frequency Radix-2 Cooley-Tukey FFT is derived. The last stage of
decomposition is in fact a Radix-2 decomposition.

Fast transforms, such as the Split-Radix FFT, are designed to minimize the total
number of complex multiplications and additions. In a single processor
implementation, this is important because all of the complex multiplications
(4 real multiplications, 2 real additions) and complex additions (2 real additions)

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

must be performed sequentially. Various coding techniques can also be utilized to
reduce the computational complexity. For example, multiplications by j can be
implemented in software (or hardware) as a swap of the real and complex parts
with a change of sign of the resulting real part.

A diagram of a length-32 Split-Radix FFT implementation is shown in Figure 3-1.
A generalization of the mathematical operation shown at each stage of the
transform is given in Figure 3-2.

Examination of Figure 3-1 reveals that the Split-Radix FFT algorithm (like other
Radix-N decompositions) is done in-place, with no additional intermediate storage
memory required. For example, at the end of the first stage the contents of the
memories containing the complex quantities x(0) and x(16) are replaced by the
complex quantities (x(0) + x(16)) and (x(0) - x(16)), respectively. The only
temporary storage required is within the computational element (see Figure 3-2)
during the complex addition and multiplication process. The outputs from each
computational element become new elements in the modified data array produced
at the end of each stage. This in-place processing capability can be exploited to
produce a highly parallel implementation architecture.

In a typical single processor Von Neumann implementation, the computer would
be programmed to compute each of the Butterflies in stage 1, proceed to stage 2
and compute all the Butterflies, and continue this process until all of the
Butterflies in the last stage, stage 5 , are computed.

A transform of length N = 2m results in m stages, with N/2 Butterflies per stage.
The resulting transformed data is in "bit-reversed' order and must be reordered
after the last transform stage.

A hardware implementation of a Butterfly is shown schematically in Figure 3-3.
Two complex inputs, A and B, are bussed into the processor, the s u m computed
and multiplied by the complex coefficient U, and the difference computed and
multiplied by the complex coefficient D. The resulting complex products are
subsequently bussed out of the processor. The complex coefficients U and D are
static, and once loaded into the holding registers remain fixed.

Implementing each of the Butterflies shown in Figure 3-1 with a single processor
results in a highly parallel, pipelined DlV processor. The outputs from the 16
processors in stage 1 are hardwired into the appropriate inputs of the stage 2
processors, with the outputs of the stage 2 processors hardwired into the inputs of
the stage 3 processors. This data flow continues to the end of stage 5. Bit reversal
of the the output data is accomplished by hardwiring the outputs of the stage 5
processors into the proper memory address.

16

~~ ~

I
1

SPEC I Systems & Processes Engineering Corporation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 17

Figure 3-1 Length-32 Split-Radix DFT Algorithm Representation.

I

I
I

I
I

SPEC
Systems & Processes Engineering Corporation

A

B

Data Flow

U [A + B]

D [A - B]

Figure 3-2 Generalization of Split-Radix DFT Node Arithmetic Operations.

18

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
1

b
serial A

b
B serial

SPEC
Systems & Processes Engineering Corporation

Register

U.[A+B]

D. [A-B]

serial

Processor
Element

serial

Register

U - a
a>
v)

.-
L-

- m
a>
v)

.-
L-

D

Figure 3-3 Single Processor Implementation of a DFT Butterfly.

19

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
1

SPEC
Systems & Processes Engineering Corporation

DFT
Power Length

2 4
3 8
4 1 6
5 3 2
6 6 4
7 128
8 256
9 51 2

1 0 1024
1 1 2048
1 2 4096
1 3 81 92
1 4 16384
1 5 32768
1 6 65536

1 Butterfly/Node

Nodes I Inputs loutputs
4 2 2
1 2 2 2
3 2 2 2
8 0 2 2
192 2 2
448 2 2

1024 2 2
2304 2 2
51 20 2 2
11 264 2 2
24576 2 2
53248 2 2

114688 2 2
245760 2 2
524288 2 2

16 ButterflieWNode

Nodes I Inputs IOutputs

2 3 2 3 2
5 3 2 3 2

1 2 3 2 3 2
2 8 3 2 3 2
6 4 3 2 3 2
144 3 2 3 2
320 3 2 3 2
704 3 2 3 2

1536 3 2 3 2
3328 3 2 3 2
71 68 3 2 3 2
15360 3 2 3 2
32768 3 2 3 2

Table 3-1 Single Stage DFT Processor Requirements.

Table 3-1 lists the number of processors required to compute DFTs of various
lengths. For example, a length-1024 DFT, one Butterfly per node, array would
require 5120 processors. Likewise a length-4096 DFI’ array would require 24576
processors, a prohibitive number of integrated circuits in both cases.

Therefore, either each processor must compute more Butterflies or each
integrated circuit must include a larger number of processors to be practical. If
each integrated circuit contains 16 processors, each capable of computing a
Butterfly, or each processor sequentially computes 16 Butterflies, then a length-
1024 DFT would require 320 integrated circuits, each with 32 inputs and 32
outputs. A length-4096 DFT would require 1536 integrated circuits, with the same
number of inputs and outputs.

Another alternative to the single node, single processor approach is shown in
Figure 3-4. A length-32 transform is implemented with a single set of 16
processors configured to compute all 5 stages of the transform. The inputs A1 and
B1 are the inputs used by the processors in stage 1 of the transform with
corresponding coefficients and outputs, A2 and B2 are used as inputs for the stage
2 calculation with corresponding coefficients and outputs. This recirculation
continues through all 5 stages. The only increase in complexity in the processor

20

I
I

A 3 b

A 4 b

A 5

B 1 b

B 2 b

B 3 b

B 4 b

b

SPEC

Processor
Element
I

I
I
I
I

I
I
I

I
I

Systems & Processes Engineering Corporation

Registers

A 2

B5-4 1-1

Figure 3-4 Multistage Processor Implementation of a DFT Butterfly.

21

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

DFT
P owe r Length

2 4
3 8
4 1 6
5 3 2
6 6 4
7 1 2 8
8 2 5 6
9 51 2

1 0 1024
1 1 2 0 4 8
1 2 4096
1 3 8 1 9 2
1 4 16384
1 5 32768
1 6 65536

1 Butterfly/Node

Nodes I Inputs [Outputs
2 4 4
4 6 6
8 8 8

1 6 1 0 1 0
3 2 1 2 1 2
6 4 1 4 1 4
1 2 8 1 6 1 6
2 5 6 1 8 1 8
5 1 2 2 0 2 0

1024 2 2 2 2
2048 2 4 2 4
4096 2 6 2 6
81 9 2 2 8 2 8
16384 3 0 3 0

3 2 7 6 8 3 2 3 2

2 Bu tterflies/Node

Nodes I Inputs]Outputs
1 8 8
2 1 2 1 2
4 1 6 1 6
8 2 0 2 0

1 6 2 4 2 4
3 2 2 8 2 8
6 4 3 2 3 2
1 2 8 3 6 3 6
2 5 6 4 0 4 0
51 2 4 4 4 4

1024 4 8 4 8
2 0 4 8 5 2 5 2
4096 5 6 5 6
81 9 2 6 0 6 0
16384 6 4 6 4

Table 3-2 Multiple Stage DFT Processor Requirements.

is a clock input to toggle between the multiple input and output connections and
the corresponding complex coefficients, and additional holding registers to
accommodate the complex coefficients. The internal computational elements of
the processor are identical.

While the number of processors required is reduced by a factor of rn for a length-
2m transform, the time required to compute a complete transform is now equal to
the computation time per stage, T,, times the number of stages, or T b d = T, m.

Table 3-2 lists the number of processors required to compute various length-N
transforms using this approach. For example, a length-1024 DFT requires 512
processors, with 20 inputs and 20 outputs. A length-4096 DFT' requires 2048
processors, each with 24 inputs and 24 outputs. If however, each processor were
to do two Butterflies instead of one, then the number of processors required for a
length-1024 DFT is reduced to 256, with each processor requiring 32 inputs and
outputs instead of 16.

These two highly parallel architectures represent a brute force approach to
computing a Fourier transform. These approaches have the advantage of not
requiring any intermediate storage memory and can conceivably compute, on

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

average, an arbitrary length FF'T in as little as one Butterfly computation period.
However, an extremely large number of processors are required to implement
this DFT specific systolic array architecture.

32.2 BlockDFI'

A decomposition of both the time and frequency indices, with a radix equal to the
square root of the transform length, results in a transform comprised of two equal
length transforms. This type of decomposition is restricted to transforms of
length-4m (m = 1,2,3, ...). The time index is decomposed by mapping the index
into n = a*M + b, where M is the kernel radix (M = NIB = 2m) and a,b are the new
time indices. The frequency index is mapped into k = A + MOB (the change in
nomenclature interchanges the rows and columns of the transformed matrix).

For example, a length-42 transform, with a Radix-22 kernel, results in the time
index decomposition n = 4a + b, with the indices a,b given by a = 0,1,2,3 and b =
0,1,2,3, with b incrementing faster. A similar decomposition for the frequency
index k results in the mapping k = A + 4B, with the indices A,B taking on the
values A = 0,1,2,3 and B = 0,1,2,3.

The square array x(a,b) maps into the sequential data array x(n) as shown:

Multiplying the indices n and k, we find

nk = (4a + b)(A + 48) = 4aA + bA + 4bB + 16aB 11

which results in the complex multiplier

27c 27c 27c 27c -j-nk -j-aA -j-bA -j-bB
nk 16 4 16 4 aA bA bB

C,, = e = e e e = '4 '16 '4

23

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

Substituting Eqn. (12) into Eqn. (2) results in the governing transform equation

3 3 3

b=O a=O b-0
13 Ab bB

X(A,B) = C,, C, Wy: x(a,b) c:A = c:: c9B

where the intermediate transform, X(A,b), is given by

3

X(A,b) = Wyz x(a,b) C:A
a-0

14

Note that Eqns. (13) and (14) are of identical structure, and the coefficients C4 are
identical. In order to condition the input data, we have introduced a sequence of
"window" coefficients,20,21 denoted by W. Introduction of the window coefficients
into the equation results in this structural symmetry, which is exploited in the
hardware architecture to implement a two stage transform with identical
processor elements.

The transform can be implemented in two successive, identical stages. For a
length-16 transform, each stage requires two 16-word memories, two 4-word
memories, and a length-4 DFT processor capable of performing a complex
multiply operation followed by a complex multiply accumulate operation.

The two stage transform defined by Eqn. (14) can be readily adapted to a multiple
processor configuration. Processors can be configured to compute rows of the
intermediate transform array X(A,b) in parallel. After a row of the intermediate
transform array is computed, a second set of processors can utilize the data to
compute either a row or column of the transformed array X(A,B) in parallel,
depending upon the implementation. An array processor implementation of a
length-16 block DFT is shown in Figure 3-5.

Parallelism in the first stage is achieved by dedicating a processor element to
evaluation of X(A,b) for each value of the index b (requiring four processor
elements for a length-4 transform). The snmmation over a, for each value of b, is
shown in Table 3-3. Each dedicated processor operates on a single column of the
x(a,b) data array, along with the corresponding window coefficients. The Wax
products are computed only once and stored in memory. After the Wax products
are computed, the processors cycle through the C4 coefficients multiplying by the
Wax products and accumulating the sum. The index into the C4 array is
determined by the value of A.

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems 8 Processes Engineering Corporation

Figure 3-5 Length-16 Block DFT Array Processor.

25

~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1

SPEC
Systems & Processes Engineering Corporation

Wi: x(1,O) C:" W i i x(1,l) C I A W i i x(1,2) C i A W:; x(1,3) C:" a = 1

SUM =X(A,O) = X(A,l) = X(A,2) = X(A,3)

Table 3-3 Parallel Processor Evaluation of the Transform X(A,b).

A hardware implementation of the algorithm discussed above is shown in Figure
3-6 for the case b = 0. A column of the raw signal data is loaded into the input
registers in a load operation. (This loading procedure, and the order in which the
data becomes available, is application dependent.) After the data is loaded, the
raw signal data is clocked out of the input registers and multiplied by a window
coefficient. A set of window coefficients is downloaded into each processor prior to
operation, with each processor containing one column of the window coefficient
array. Thus, the memory required to store the window coefficients is evenly
distributed over all of the processor elements.

The W*x products are utilized by the second stage of the processor to compute the
sum shown in Table 3-3. The Cq registers are common to all of the processors. A
s u m is computed for each value of A, using A as an index into the C4 registers.
For a length-4 transform each X(A,O) requires 4 multiply and accumulate cycles.
The result is bussed out of the processor element serially to the appropriate stage
two processors.

The memory required to hold the fixed constants is 8 complex words (2 sets of
constants 4 complex worddset) for a length-16 transform . For a length-1024
transform the total memory required per processor is 64 complex words (2 sets of
constants 32 complex worddset).

26

SPEC
Systems & Processes Engineering Corporation

Figure 3-6 Stage 1 Computation of a Length-16 Block DFT.

27

I
I
I
I

I
I
I

I
I

SPEC
Systems & Processes Engineering Corporation

cy; X(0,O) c4"B c;; X(1 ,O) cl c;; X(2,O) c4" cy; X(3,O) c4" b=O

Cy; X(0,I) CIB C i i X(1,I) C i B C;: X(2,l) C: Cy; X(3,l) C i B b = 1

Cy: X(0,2) Cz C i i X(1,2) Cl C;: X(2,2) Cf Cy: X(3,2) Cl b 3 2

Cy: X(0,3) C: Ci: X(1,3) C: C;: X(2,3) C: Cy: X(3,3) C: b = 3

SUM =X(O,B) = X(1 ,B) = X(2,B) = X(3,B)

Table 3-4 Parallel Processor Evaluation of the Transform X(A,B).

An identical set of processor elements can be utilized to compute the stage-2,
length-4 transform, using the intermediate transform, X(A,b), as input data.
Now, instead of window coefficients, each processor element is downloaded with
the appropriate twiddle factors during the initialization procedure. The
summation to be camed out (from Eqn. (13)) is shown in Table 3-4.

Each processor element is configured to compute a summation corresponding to a
fixed value of the frequency index A. A block diagram describing the processor
element configured for the A = 0 summation is shown in Figure 3-7. Serial data is
received from the stage one processors in the input registers, and is subsequently
multiplied by the appropriate cl6 twiddle factors.

The COX product is multiplied by the appropriate C4 coefficient, indexed by B, and
the product accumulated. The result is the X(0,B) term of the Fourier transform.
The time and memory required to compute the second length-4 transform is
identical to that of the first length-4 transform.

I
1

Table 3-5 shows the number of processors required to implement various length-N
Block DFTs. As discussed, a length-16 transform requires two four processor
stages, with each processor requiring four inputs and four outputs. A length-1024
transform requires two 32 processor stages, with 32 inputs and 32 outputs for each
processor.

2 0

SPEC
Systems & Processes Engineering Corporation

0 . . Bit-Serial

~~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Input
Registers

Figure 3-7 Stage 2 Computation of a Length-16 Block DFT.

29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Power DFT Length
2 4
4 1 6
6 6 4
8 2 5 6

1 0 1024
1 2 4096
1 4 16384
1 6 65536

SPEC
Systems & Processes Engineering Corporation

Processors I Inputs I outputs
4 2 2
8 4 4

1 6 8 8
3 2 1 6 1 6
6 4 3 2 3 2
1 2 8 6 4 6 4
2 5 6 1 2 8 1 2 8
5 1 2 2 5 6 2 5 6

Table 3-5 Block DFT Processor Requirements.

The processor architecture described in Section 4 can accommodate a maximum
of 32 input and 32 output ports. The initial implementation will be designed with 8
inputs and 8 outputs, thus the initial GaAs processor will be capable of computing
transforms of up to length-64 using this algorithmic approach. A 32-port
processor would be capable of handling DFT lengths of up to 1024.

3.3 Other Signal Processing Algorithms

In addition to the Fourier transforms discussed above, other related transforms
such as the Fast Hartley transform,22-31 and the cosine transform,3%33 are well
suited for implementation in a GaAs based systolic array. Two other commonly
used signal processing processing algorithms are the Kalman Filter and the
Finite Impulse Response Filter.

3.3.1 Kalman Filter

Recent investigations34 have shown that parallel processing techniques can be
utilized to implement the measurement update step of the Kalman filter. SPEC'S
processor design could be easily used to implement the parallel processor Kalman
filter described in reference 34.

303.2 DigitalFilters

Digital filters, which operate on a stream of data, could be inplemented using a
linear array topology such as that shown in Figure 2-3. A simple digital filter
used for smoothing simply averages nearest neighbors. This could be readily
implemented with the proposed processor. More elaborate image filters, such as
a 2-D nearest neighbor matrix filter, could be implemented by connecting each
processor node to it's eight nearest coplaner neighbors (9 point matrix filter).

30

I
I

I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

3.4 Review of signal processln ' gAlgorithms

The DFT algorithms presented are examples of the kinds of techniques that can be
utilized to structure DFT algorithms in a manner such that implementation can
be achieved in a highly parallel and distributed fashion. Each algorithm is
conducive to implementation with very high speed GaAs Bit-Serial processors.

The massively parallel architecture requires little intermediate memory, only
temporary registers within the processor elements, and can be configured to
compute a length-1024 transform in time T, , where T, is the computation time
per stage. The latency of the array processor is Ts m, where m is the total
number of stages. An obvious drawback to this architecture is the large number
of processor elements required to implement a large length-N transform.

The Block DFT implementation requires fewer processor elements, but requires
more intermediate storage elements and more computations per processor. This
technique is attractive however, because a much more reasonable number of
processors is required to compute large length-N transforms. A drawback to this
technique is the large number of input and output connections required to
interconnect processor nodes.

31

~ ~-

I
I
I
I
I
I
I
I
I
I
I
I
4
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

4.0 GaAsProcessorArchitecture

41 ArchitectumOverview

SPEC has evaluated two basic approaches to designing a very high speed DFT
systolic array processor, each requiring a comparable level of device integration.

The first alternative is to implement very elementary function, but highly
integrated processors. Each processor is explicitly designed to compute a Radix-2
Butterfly and cannot be reprogrammed to compute other signal processing
algorithms. In Section 4.2 we describe such an element. Previous investigators
have designed integrated CMOS bit-serial processors to compute fixed point
Butterflies (see Denyer and Renshaw).

The second alternative is to design a high performance reprogrammable
processor capable of executing an instruction stream. This is the approach that
SPEC has chosen to pursue in the Phase I1 program. While this approach is not
as fast as the massively parallel, dedicated DFT Butterfly processor, it has a much
broader range of applications and is a much more attractive commercial product.

Figure 4-1 shows the four basic processor families, Complex Instruction Set
Computer (CISC), Reduced Instruction Set Computer (RISC), and Digitial Signal
Processor (DSP). An example of a CISC processor is the Motorola 68030
microprocessor, which is a highly integrated device with many thousands of
transistors. Likewise highly integrated DSPs, such as the Motorola 96000, and
RISC processors, such as the Motorola 88000, are implemented in silicon and
require in excess of 100,000 transistors. Clearly, processors of these complexities
will not be practical in GaAs for several years.

Sun Microsystems has developed a RISC architecture which is suitable for
implementation in GaAs. The current silicon based RISC processor used in Sun
Series-4 workstations is implemented in a Fyjitsu gate array. The design
required approximately 16,000 of the available 20,000 gates in the gate array.

Sun Microsystems has licensed the SPARC architecture to Cypress
Semiconductor which is currently producing a very high performance CMOS
version of the processor. Sun Microsystems has also licensed the architecture to
BIT which has an ECL version of the SPARC processor in development.

SPEC has held discussions with Sun Microsystems concerning licensing of the
SPARC architecture for GaAs applications. In these discussions Sun has
expressed a strong interest in licensing the technology to SPEC for either
embedded applications or commodity chip production.

32

I
I
I
I
I
I
I

I

I
I
I

I

SPEC
Systems & Processes Engineering Corporation

- Intel
80386

- National
32532

- AT&T
321 00

-

P
AT&T

DSP32C

Motorola
68030

- Texas Instruments
320C30

M 11-STD
1750A

RlSC I
Motorola 4 88000

-1 29000 AMD I

-1 R3000 I

I I ntergrap h -I Clipper

Intel U 80960

P
Motorola
96000

I t 1

Analog Devices
ADSP21 OOA

Figure 4-1 Commercial Processor Architectures.

33

SPEC
Systems i3 Processes Engineering Corporation

I
I
I

I
I
I
I

SPEC is very confident that the SPARC RISC architecture can be realized in a
GaAs standard cell design. Vitesse and GigaBit Logic currently offer 10,000 gate
standard cells and are bringing 20,000 gate standard cells to market in the fourth
quarter of 1988. It is virtually certain that in the time frame of the Phase I1
program standard cells of approximately 30,000 to 40,000 gates will be available.

It is apparent from recent literature35-47 that numerous hardware design
approaches have been investigated for high speed Fourier transforms. To date, no
known DFT specific GaAs hardware has been developed and reported in the
literature.

General purpose Bit-Serial techniques have been studied at length48-54, and have
been implemented in a number of applications.

4.2 DedicatedBitrSerialDFTProcessorElements

The Butterfly processor shown in Figure 3-3 can be easily implemented as a Bit-
Serial processor. Denyer and Renshaw describe techniques for implementing
complete bit-serial processors in CMOS using a specialized silicon compiler.
High level macros have been devised to implement lower level arithmetic
functions such as add, subtract, multiply, and divide, and low level control
functions such as bit delay. The arithmetic bc t ions described are fixed point
operations. Other investigators have reported bit-serial implementations of
floating point arithmetic operations55. Similar implementations are now
practical in GaAs.

A complete Radix-2 Butterfly processor is shown in Figure 4-2. A global clock is
used to synchronously clock in the complex floating point variables A and B. A
complex floating point adder and subtractor are used to compute the complex sum
and difference. The difference (A - B) is clocked into a complex multiplier which
computes the product of (A - B) W, and the sum (A + B) is clocked into a delay
which synchronizes the two outputs.

In a highly parallel implementation such as the one described in Section 3.2.1, the
time required for a synchronous bit-serial system to complete a single transform
stage is determined by the computational complexity of the most extensive
calculation. Therefore, unless all computations within a single stage can be
reduced in complexity, nothing is achieved by reducing the complexity of the
remaining calculations. In an asynchronous system, in which each PE initiates
processing only after receiving valid A and B inputs from the previous stage, time
savings can be realized if the computational complexity is properly spread over
computational nodes.

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P CADD

SPEC
Systems & Processes Engineering Corporation

- A

b CSUB
B

b CMUL

I

Global Clock

1

I
I l

A - B 4-l

t
Bit-Serial Radix-2 Butterfly Primitive I

W

F'igure 4-2 Dedicated Bit-Serial Floating Point Butterfly Processor.

35

W [A - B] -

I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
i

Complex Parallel Operation
Complex Floating Point Addition
Complex Floating Point Subtraction
Complex FloatinQ Point Multiplication

SPEC
Systems & Pracesses Engineering Corporation

5 8
5 8

634

Bit-Serial Arithmetic Operation I Clock Cycles

32-Bit Floating Point Addition
32-Bit Floating Point Subtraction
32-Bit Floating Point Multiplication

Complex Sequential Operation
Complex Floating Point Addition
Complex Floating Point Subtraction
Complex Floating Point Multiplication

4 8
4 8

576

1 1 6
1 1 6

2 5 3 6

Table 4-1 Floating Point Arithmetic Operation Timing.

The number of clock cycles required to compute a complex floating point Butterfly
is equal to the time required to compute a complex additiodsubtraction and a
complex multiply,

CBF = 58 + 634 = 692 clock cycles

for completely parallel arithmetic operation and,

CBF = 116 + 2536 = 2652 clock cycles

for sequential arithmetic operation.

With a 1 GHz clock rate and completely parallel arithmetic operation, the time
required to compute a Radix-2 Butterfly, TBF, is equal to

TBF = 692 cycles / 1 GHz = 692 nsec

and for a 2 GHz clock

TBF = 692 cycles / 2 GHz = 346 nsec.

36

I
I
1
1

I
I

SPEC
Systems & Processes Engineering Corporation

Therefore, the total time required to compute a completely parallel, 10 stage,
length-1024 transform (latency) is 6.92 (3.46) psec at 1 GHz (2 GHz).

These estimates assume that data transfer can be accomplished concurrently
with the computation by buffering the serial inputs. The communication data
rate, RcOmm, required to transfer 64 bit complex data between stages is equal to

Rc,m = 64 bits / 692 nsecs = 92 Mbitdsec

for 1 GHz operation.

4.3 RISC Signal Processor

After careful review of DFT algorithms and other classes of algorithms, SPEC has
reached the following conclusions concerning basic algorithm characteristics
and array processor requirements:

Numerically Intensive Operation

Requires Floating Point Coprocessor

Communications Intensive Operation

Requires Communications Coprocessor

Coefficient/Constant Intensive Operation

Requires Large Register Set o r Fast Memory for Good Perfonnance

GaAs Technology - Less than - 25,000 Gate Standard Cell

RISC Architecture

37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

The optimum solution set is:

SPARC Processor

Floating Point Coprocessor Defined in Architecture

Compatible with Communications Coprocessor

Very Large Fixed Point and Floating Point Register Sets

Implemented in Silicon with a 20,000 Gate Array

Architecture Compatible with ECL and GaAs Implementation

4.3.1 SPARCProcessor

The SPARC architecture defines an Integer Processor, a Floating Point
Coprocessor (FPC), and an interface to a application dependent Coprocessor. The
Processor, FPC, and Coprocessor can operate concurrently, Within the FPC
separate floating point Addition, Subtraction, Multiplication, and Division Units
can also operate concurrently.

A typical array processor node configuration is shown in Figure 4-3. The
Processor extracts instructions from the instruction stream and routes applicable
instructions to either the FPC or the user defined coprocessor.

The SPARC architecture has approximately 50 integer instructions, which fall
into the following basic categories:

Load and Store Instructions

Arithmetic, Logical, and Shift Instructions

Coprocessor Instructions

Control & Transfer Instructions (Jumps, Calls, Traps, etc.)

Read & Write Control Register Instructions

' I
I

38

I
I

SPEC
Systems & Processes Engineering Corporation

Condition Codes, Exception, Instruction Control, Coprocessor Present

~ I I L

Figure 4-3 Systolic Array Computational Node.

39

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

A large number of registers are implemented in the SPARC architecture. The
registers are organized as overlapping sets to facilitate CALL and RETURN
procedures. The architecture specifies between 6 and 32 windows, with each
window containing 32 registers organized as shown in Figure 4-4. Each task sees
8 GLOBAL registers, 8 LOCAL registers, 8 IN registers, and 8 OUT registers in a
window.

The IN and OUT registers are shared across windows, i.e. window W3 IN
registers are common to window W2 OUT registers, and W3 OUT registers are
common to W 4 IN registers. Procedures can quickly pass data through these
shared registers.

This register architecture can be exploited by numerical algorithms passing data
to subroutines, and as implemented by SPEC, the architecture allows subroutines
to be nested six deep.

The SPARC architecture specifies two operating modes, USER mode and
SUPERVISOR mode. Array configuration and control software can execute in
the secure SUPERVISOR mode, while numerical routines will execute in USER
mode.

A block diagram of the basic SPARC architecture to be implemented by SPEC is
shown in Figure 4-5. The processor has separate 32-bit address and
instructioddata busses. The operation of the processor is broken into two
primary units, the Arithmetic and Logic Unit and the Shift Unit. Although the
register file can have up to 32 overlapping windows, SPEC'S baseline GaAs
implementation will provide only the six required minimum.

Instructions can have up to two source registers and one destination register,
thus two source operands can be operated on and returned to a different register
by the Arithmetic and Logic Unit or the Shift Unit. Two Program Counters are
maintained, one PC points to the current instruction address and one PC points t o
the next instruction address. All instructions are 32 bits and are aligned on 32-bit
boundaries in memory, simplifying instruction decode and execution. Only Load
and Store instructions are used to access memory. All other instructions operate
only on internal registers.

A complete description of the SPARC architecture can be found in The SPARCTM
Architecture Manual published by Sun Microsystems, Inc., Mountain View,
California.

40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

RETURN

Figure 4-4 SPARC Register Window Architecture.

41

CALL

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

k

Destination Port

Register File
(6 Windows, 104 Registers)

Source 1 Port Source 2 Port

Constants

v v

41

v v

Arithmetic
and Logic

Unit
Unit

I

l-
h J I I

Program
Counters 1 I D

I I Load
Align
A

v Multiply-State Register
Processor State Register Store

Window Invalid Mask Align
Trap Base Register T Bus Bus

1 Instruction
Decode

k.32

v
Address InstructiorVData

Figure 4-5 SPARC Processor Architecture.

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

4.3.2 Bibserial Floating Point Coprocessor

The SPARC architecture specifies the instruction set, control registers, and
operation of a Floating Point Unit. The FPU may be a coprocessor or integral to
the processor. SPEC's design allocates the FPU to a coprocessor, due to the
expected gate count required to implement the unit.

SPEC's Floating Point Coprocessor (FPC) design consists of a register file, a
Floating Point State Register, a four entry Floating Point Queue, an instruction
decode and execution unit, a Multiplication Unit, a Division Unit, an Addition
Unit, and a Subtraction Unit. The FPC will be designed in accordance with the
ANSI/IEEE-754-1985 floating point specification. As specified by the SPARC
architecture, each arithmetic unit can operate concurrently with other units. A
block diagram of the FPC is shown in Figure 4-6.

High performance silicon Floating Point Coprocessors, such as the Motorola
68882 and the Intel 80387, are of equal or greater complexity than the
accompanying CISC processor. SPEC has estimated the level of complexity for a
full FPU implementation to be beyond the capability of current GaAs technology.
Therefore, the arithmetic units will be implemented as bit-serial units to lower
the design complexity.

This will degrade the performance of the FPC, but it will provide an avenue for
implementing the FPC in near-term GaAs technology. Examination of the
addition, subtraction, and multiplication times for bit-serial operation given in
Table 4-1 reveals that these operations will, however, compare favorably in
performance with fully parallel silicon units operating at much lower clock
frequencies. As G A S technology progresses, bit-serial operations can be
expanded into fully parallel operations as technology permits.

A design for the Floating Point Multiplication Unit is shown in Figure 4-7. Data
from register file source 1 and register file source 2 is loaded into exponent and
fraction buffers at the initiation of the instruction. This load operation initiates
both a bit-serial exponent add operation and a bit-serial fraction (mantissa)
multiply operation. Normalization data is fed from the bit-serial multiplier to the
bit-serial exponent adder and the new floating point exponent and fraction are
placed in a result buffer. At the completion of the bit-serial operation, the
instruction completes by placing the result in the proper destination register.
Exception, Rounding, Overflow, and Trap information is communicated to the
Floating Point Status Register during the completion stage of the multiplication
instruction.

43

I
I

Bit-Serial
Multiplication

Division
Units I

I
I

9

Bit-Serial
Addition

Subtraction
Units

I
I
I
I

1 I

SPEC
Systems & Processes Engineering Corporation

L I

*
Destination Port

Register File
(32 Registers)

Source 1 Port Source 2 Port

Floating Point State Register *
1

Coprocessor
Bus

A I
I I I

Floating Point Queue 1 4 instruction 1 I (4 Entries) Decode
I I I -

Address InstructiotVData
Bus Bus

F i g u r e 4-6 SPARC Floating P o i n t Coprocessor Architecture.

44

I
I

SPEC
Systems & Processes Engineering Corporation

I
I

I
I
I

Register File Sourn 1

6 exponent fraction I I
31 30

fraction buffer

&I exponent buffer

Reglster File Source 2

8 exponent fraction I I
31 30 22 0

lrection buffer I

exponent buffer +
fraction buffer

'I
exponent buffer

I *
fraction I

31 30 22 0

Register File Destlnatbn

Figure 4-7 Floating Point Coprocessor Multiplication Unit.

45

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

A similar design has been establish d for the Fl ting Point Addition Unit, and is
shown in Figure 4-8. Data from the Source 1 register and the Source 2 register is
loaded into exponent and fraction buffers at the initiation of the floating point
addition instruction. A bit-serial comparator compares the two exponents,
determines which fraction is to be shifted and by how much, and passes the data
to the proper bit-serial shifter (delay). After normalization, the fractions are
added by the bit-serial adder, with the carry fed to the comparator. The resultant
fraction and exponent are then fed into a buffer. At the completion of the addition
instruction, the result is loaded into the proper destination register.

As shown in Figure 4-6, a four entry Floating Point Queue is provided to hold up to
four instructions and instruction addresses. This design allows the FPC to
operate concurrently with the processor and the Communications Coprocessor,
discussed in the following section.

4.3.3 Bit&erialArray Communications Coprocessor

To facilitate rapid inter-node data transfer, SPEC has developed a unique
communications coprocessor architecture. This communications architecture
offers several advantages over traditional inter-processor communication
methodologies, such as dual-port RAM, global RAM, and low speed, memory
mapped, serial communication devices.

An overview of the communications coprocessor architecture is shown in Figure
4-9. The coprocessor architecture includes a physical interface to the host
processor, an instruction decode and execution unit, status registers, a
communications queue for pending instructions and addresses, communication
registers, and multiple communication units to service the physical link. Each
communication unit includes input and output buffers, low level link control
fitnctions, and interface drivers/receivers.

A SPARC compatible implementation of the communications coprocessor is
shown in Figure 4-10. The unit has full 32-bit address and instructioddata buses,
an eight entry communications queue, a number of status registers, eight full-
duplex bit-serial communication units, and 32 32-bit communication registers.

46

I
I

v
elponent buffer

I

SPEC
Systems & Processes Engineering Corporation

I
I
I

I
I
I

I
I

Figure 4-8 Floating Point Coprocessor Addition Unit.

47

I
' I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I

SPEC
Systems 8 Processes Engineering Corporation

Address
I---I

Data
I---I

Control - SPARC
Processor
Interface

Instruction
Decode

84
Execution

Unit

Status
Registers

Communications
Queue

Instruction
8 4

Address

Communication
Registers

Communication Unit 1 L
InpuVOutput Buffers

Link Control

Communication Unit 2 L
F- InpuVOutput Buffers

Link Control

Communication Unit 3 1-b

I- InpuVOutput Buffers
Link Control
I

Communication Unit 4 1-b

I- InpuVOutput Buffers
Link Control

Communication Unit 5 1-b

t- InpuVOutput Buffers
Link Control

Communication Unit 6 I-*
I- InpuVOutput Buffers

Link Control

Communication Unit 7 I-,
InpuVOutput Buffers

Link Control

Communication Unit 8 I-,
InpuVOutput Buffers

Link Control

Figure 4-9 Communications Coprocessor Overview.

48

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Link 7

Link 8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3

Bit-Serial
Communication

Units

I

SPEC
Systems & Processes Engineering Corporation

w - .

Destination Port

Register File
(32 Data Buffers)

Source Port

Output Channels 4-

Input Channels 1-•

1

1
Communications State Register

Channel Enable Mask
Channel Output Status Register
Channel Input Status Register

Node Address Register

Coprocessor
Bus

I I I b 4

I Communications Queue + 4 In;;;n I (8Entries)
I I I -

Address InstructiorVData
Bus Bus

Figure 4-10 SPARC Communications Coprocessor Architecture.

49

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
1
I

SPEC
Systems & Processes Engineering Corporation

The coprocessor includes a Communications State Register, for traps, exception
control, condition codes, and queue control, a Channel Enable Register, to allow
selective software enable of individual communication units, a Channel Output
Status Register, to allow testing of output channel status, a Channel Input Status
Register, to allow testing of input channel status, and a Node Address Register,
which is set at power-up by external pin programming to enable the processor
node to recognize its array position. All communications coprocessor registers
are shown in Figure 4-11.

Operation of the bit-serial communication units is shown in Figure 4-12. Each
communication unit operates independently and concurrently with the other
units. Each unit is full-duplex, and can send and receive data simultaneously.

Data transfer between nodes is accomplished in 32-bit packets, with each
communication unit transmiting up to 32 packets in a single SEND operation.
Hardware handshaking between units is accomplished using a Device Ready
(RDY) signal. Communication Unit registers are described in Figure 4-13.
Instruction execution is depicted in Figure 4-14. A SEND instruction moves up to
32 data words from the Communication Registers to the specified Communication
Unit Output Register, as the register becomes available. After loading the Output
Register, control is passed to the Communication Unit for completion of the
transmit operation. After the word is transmitted, control is returned to the main
execution unit for completion of the SEND instruction.

Likewise, a RECV instruction performs the reverse operation, loading data from
a Communications Unit Input Register into the Communication Registers.

The Communication Unit Input & Output Registers are not directly accessible by
the host processor. All incoming and outgoing data passes through the
Communication Registers, which are accessed using LOAD and STORE
instructions.

Definition of the Communications Coprocessor LOAD instruction is detailed in
Figure 4-15. The instruction definition follows the guidelines specified by the
SPARC architecture. Three LOAD instructions are defined, Load Coprocessor
Register (LDC), Load Double Coprocessor Register (LDDC), and Load Coprocessor
State Register (LDCSR). The effective address is formed by the processor source
registers or by a source register and a sign extended 13-bit offset.

The STORE instruction is defined in Figure 4-16. Four instructions are defined,
Store Coprocessor Register (STC), Store Double Coprocessor Register (STDC),
Store Coprocessor State Register (STCSR), and Store Double Coprocessor Queue
(STDCQ).

50

SPEC
Systems & Processes Engineering Corporation

Communications State Register
31 26 12 1 1 9 0

CSR Itrap mask I resewed lqne I ccc I exception field I

Channel Enable Register
31 7 0

CER I reserved I enable

Channel Output Status Register
31 7 0

COSR I resewed status

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Channel Input Status Register
31 7 0

ClSR [reserved status

31
Node Address Register

15 0
reserved I address NAR I I

Communication Registers
31 0

I cri 61

Figure 4-11 Communications Coprocessor Register Architecture.

51

~

I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

Bit-Serial Communication Unit Interface

DATA

RDY +

DATA +

SEND I--

-
Link

r

Link

I--- DATA

4 SEND

-1
DATA

I-- RDY

Node - n
Communication Unit - m

Node - n'
Communication Unit - m'

Bit-Serial Communication Unit Timing

Data Packet Data Packet
"...H

Figure 4-12 Inter-Node Communications.

52

I
I
1
I
I
1
I

I
1

SPEC
Systems & Processes Engineering Corporation

Communication Unit 1 Registers
31 0

Communication Unit 2 Registers
31 0

I Input Register I
I Output Register I

Communication Unit 3 Registers
31 0

Communication Unit 5 Registers
31 0

I Input Register I
I

~~

Output Register

Communication Unit 7 Registers
31 0

Communication Unit 4 Registers
31 0

I Input Register 1
1- Output Register I

Communication Unit 6 Registers
31 0

I h u t Register I
~ ~~

Output Register I

Communication Unit 8 Registers
31 0

1
I
I

Figure 4-13 Communication Unit Register Architecture.

53

I
I
I
I

I
I

I
I

SPEC
Systems & Processes Engineering Corporation

Communication Registers

0

4 32-61
Data Words

2 32-Bit I Datawords

\ SEND Operation

Communications Unit 3

Output Register
Link

Execution

Communications Unit 6

2 Link

I Input Register IC==.

31

Figure 4-14 Communications Coprocessor SEND & RECV Operation.

54

I
I

LDC
LDDC
LDCSR

D
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11 0000 Load Coprocessor Register
110011 Load Double Coprocessor Register
110001 Load Coprocessor State Register

SPEC
Systems & Processes Engineering Corporation

Instruction Format

11 rd I 0P3 I ignored I rs2

11 rd I 0P3 I simml3 I
31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

I opcode 0P3 operation I

I Assembly Language Syntax I
Id [address], Cn
I dd [address], Cn
Id [address], CSRn

Effective Address:
r[rsl] + r[rs2] or
qrsl] + sign-ext(simml3)

Figure 4-15 Communications Coprocessor Load Instructions.

55

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

STC
STDC
STCSR
STDCQ

SPEC
Systems & Processes Engineering Corporation

110100 Store Coprocessor Register
110111 Store Double Coprocessor Register
110101 Store Coprocessor State Register
110110 Store Double Coprocessor Queue

Instruction Format

1 1 rd I 0P3 I rsl 101 ignored

11 rd I 0P3 I simml3 I
31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

I owode OP3 operation I

I Assembly Language Syntax I
st Cn, [address]
std Cn, [address]
st CSRn, [address]
std CQ, [address]

Effective Address:
flrsl] + firs21 or
r[rsl] + sign-ext(simml3)

Figure 4-16 Communications Coprocessor Store Instructions.

56

I
1

SPEC
Systems & Processes Engineering Corporation

The SPARC architecture also defines Conditional BRANCH instructions for the
coprocessor. The BRANCH instruction has a 22-bit displacement. Four condition
codes are supported, supplying 16 specific branch conditions. The use of the
condition codes is determined by the specific application. SPEC has identified two
condition codes to be used with the TEST instruction to determine the status of the
Input and Output Communication Unit buffers. Figure 4-17 describes the
operation of the Communications Coprocessor conditional branch instruction.

The last class of coprocessor instructions defined by the SPARC architecture are
the Coprocessor Operate instructions. These are general purpose instructions t o
be defined by the application. SPEC has identified four coprocessor operate
instructions, Send Data Packet (CSEND), Receive Data Packet (CRECV), Test
Input (Output) Status Register (CTSTcc), and Flush Communication Unit Buffer
(CFLUSH). These instructions are specified in Figure 4-18.

The CSEND instruction sends up to 32 data words over a communications link
and the CRECV instruction receives up to 32 data words over a link.

I
I
I

I
1
I
I

57

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1
I
1

SPEC
Systems & Processes Engineering Corporation

Instruction Format

OOlal cond I l l 1 I disp22 I
31 2928 24 21 0

opcode

CBA
CBN
C 83
CB2
C 823
CB1
CB13
CB12
CB123
CBO
C BO3
C BO2
CB023
CBO1
CBO13
CB012

cond

1000
0000
0111
0110
01 01
01 00
001 1
001 0
0001
1001
1010
101 1
1100
1101
1110
1111

bp-CP-cc(1 :O] test operation

Branch Always
Branch Never
Branch if 3 set
Branch if 2 set
Branch if 2 or 3 set
Branch if 1 set
Branch if 1 or 3 set
Branch if 1 or 2 set
Branch if 1 or 2 or 3 set
Branch if 0 set
Branch if 0 or 3 set
Branch if 0 or 2 set
Branch if 0 or 2 or 3 set
Branch if 0 or 1 set
Branch if 0 or 1 or 3 set
Branch if 0 or 1 or 2 set

Assembly Language Syntax

cba{,a}
cbn{,a)
cb3{ ,a}
cbWd
cb23{ ,a}
cbl {,a}
cb 1 3 {,a}
cb12{,a}
cb123{,a}
cbO{,a}
cb03{ ,a}
cb02{ ,a}
cb023{,a}
cbOl {,a}
cbOl3{,a}
cbOl2{,a}

label
label
label
label
label
label
label
label
label
label
label
label
label
label
label
label

Condition Codes:

0 - Input Buffer Status
1 - Output Buffer Status
2 - Reserved
3 - Reserved

{,a} optional annul bit:

If branch not taken and annul set,
delay instruction not executed.

If branch taken, annul bit ignored
and delay instruction executed.

Figure 4-17 Communications Coprocessor Branch Instructions.

58

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I

CSEND 1 101 1 0 OOOOOxxxx
CRECV 1 101 1 0 00001 xxxx
CTSTcc 1 101 1 1 OOOOOyyyy
CFLUSH 1101 11 00001zzzz

SPEC
Systems & Processes Engineering Corporation

Send Data Packet
Receive Data Packet
Test Input (Output) Status Register
Flush Communication Unit Buffer

Instruction Format

101 rd I 0P3 I rsl OPC rs2
31 29 24 18 13 4 0

send Cn, Cum, xxxx
recv Cum, Cn, xxxx
ctest CSRn,yyyy
cflush zzzz

rd - Cn; rsl - Cum; rs2 - ignored
rd - Cn; rsl - Cum; rs2 - ignored
rd - ignored; rsl - CSRn; rs2 - ignored
rd - ignored; rsl - ignored; rs2 - ignored

I Assembly Language Syntax I Register Usage 1

xxxx - Number of 32-Bit Words
yyyy - Input (Output) Unit Number
zzzz - Communication Unit Number

Cn - Communications Register n
Cum - Communications Unit m
CSRn - Communication Status Register n

Figure 4-18 Communications Coprocessor Operate Instructions.

59

I
I
I
I
I
1
I
I

I
I
I

SPEC
Systems & Processes Engineering Corporation

6.0 System Simulation

6.1 ModelOverview

SPEC has developed model for a computer program to simulate arbitrary systolic
array processor topologies. The simulation is designed to model the data load
operation, the computations performed at each node, the packet or data routing
between nodes, and the operation to unload data from the array (see Figure 5-1).

The Systolic Axray Simulator (SAS) program is designed to assess the real-time
performance of an array processor. This assessment includes the processing rate
of the node processor (specified in MIPS) and the communications rate between
nodes (specified in Mbits/sec). The program is designed for asynchronous array
operation.

6 2 Implementation

SAS is being implemented in the C programming language. At the writing of
this report, development is currently in the specification stage. Structures are
developed for the input data description, the node interconnection, the algorithm
specification, and parameter entry.

An input data structure includes the raw signal data, and a time stamp for the
arrival of each data point.

The node topology description includes the number of nodes and the
interconnections made by each node. The program can read a data file which
specifies the array topology.

When a data packet is created at a node it is entered into a packet array, which the
main program loop analyzes during each pass to determine the state of the packet
transfer. It is envisioned that eventually each node in the array will be capable of
routing data packets, therefore provisions have been made for simulation of the
routing algorithm at each node.

Currently, the program is capable of accepting data from the user specifying the
dimensionality of the array (1-D, 2-D, or 3-D), the processing rate (MIPS), the
communications rate (Mbitdsec), and the number of nodes in each dimension.
The user can also select a routing methodology.

60

I
I

SPEC
Systems & Processes Engineering Corporation

Compute
Signal Data

Load Array 4

5

I

Compute
Node Algorithms

v
Route

Data Packets

Systolic Array Simulator (SAS) Program

Simulated Real-Time

- Processor Rate (MIPS)

- Communications Rate (Mbitdsec)

Asynchronous Operation

Compute
Statistics

Figure 5-1 Systolic Array Simulator (SAS) Functions.

61

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

The main program loop will execute the following sequences:

1. Load the data into the array at the communications data rate.

2. Simulate the signal processing algorithm and communications
operations using "pseudo code" at each node.

3. Simulate the data flow from node to node.

4. Unload the data from the array as it becomes available at the outputs.

5. Continue execution of the main loop until all data has passed through
the array.

6. Analyze the resultant data for numerical accuracy.

7. Analyze the array timing statistics gathered during the simulation.

SPEC is confident that this simulator will be completed early on during the Phase
I1 program to support the analysis of optimum communications methods to be
employed in the systolic array. Since the user can specify the algorithm to be
executed at each node, the simulator should be very helpful in designing parallel
processing algorithms, and assessing their capabilities and function.

62

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

6.0 Proposed Phase II Implementation

6.1 Foundry Processes & Capabilities Review

SPEC has reviewed the capabilities of a number of GaAs foundries, including site
visits to McDonnell Douglas, Texas Instruments, Rockwell, GigaBit Logic, and
Vitesse. The capabilities reviewed include process technology, capability of design
staff, facilities, and company orientation. A diagram of the foundries reviewed is
presented in Figure 6-1.

At present, SPEC believes that Vitesse offers the best solution because of their
standard cell design capability, process technology, process maturity, production
capacity, staff experience, and willingness and enthusiasm to participate in the
Phase I1 program.

SPEC expects to continue this capabilities review in the early stages of the Phase
I1 program, to include a visit to TriQuint, and follow-up visits to Vitesse and
GigaBit Logic.

6.1.1 GigaBit Logic, Inc.

GigaBit Logic, Inc. offers custom, standard cell, gate array, and MSI products.
GigaBit currently offers 5000 and 10,000 gate standard cells, with 20,000 gate
devices projected for 1989. GigaBit's standard cells are available in the following
1 pm processes:

Depletion Mode MESFET 0)
Low Power Depletion mode MESFET (LPD)
High Margin EnhancementDepletion mode MESFET (HME/D)
EnhancementIDepletion mode MESFET (ED)

GigaBit standard cells can be designed with ECL, TTL, or CMOS I/O
compatibility. Power dissipation for the 10,000 gate, current steering logic, E/D
device is on the order of 0.4 mWatt/gate. Loaded gate delays range from 50 to 150
psec. Flip Flops operating at 7 - 8 GHz have been realized. Up to three levels of
metalization are available.

GigaBit offers a number of standard cell Macros for I/O and internal cells,
including input, output and clock buffers, accumulators, flip flops, inverters, nor
gates, and many other functions. RAM and ROM cells are also now available.

63

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

FOUNDRIES

Full Custom
Corporate R&D Labs

Pilot Lines

Gate Array
Standard Cell
Full Custom

GigaBit Logic

Anthony Conoscenti

I Vitesse

Dr. Raymond Milano

m TriQuint

Louis Penque

Figure 6-1 Foundries Surveyed.

64

McDonnell Douglas

Dr. Gary Troeger

Texas Instruments

David Whitmire

Rockwell

Phil Dee

I
I
I
I
I
I
1
I
I
I
1
I
I
I
1
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

Packaging options currently include 68 pin and 144 pin leaded chip carriers, with
other package options in development.

Seattle Silicon and GigaBit Logic have jointly developed a GaAs compiler for
custom circuit designs. The compiler has been used to develop a small ALU in
Capacitor Diode FET Logic (CDFL). Discussions with Seattle Silicon indicate,
however, that no additional development has occurred on this product.

Proprietary SPICE models of GigaBit processes and device characteristics are
available. Daisy Systems, Mentor Graphics, and VLSI Technology workstations
are supported.

GigaBit has a large production facility with a Class 10 cleanroom.

6.18 Vitesse Semiconductor Corporation

Vitesse Semiconductor Corporation offers complete foundry services, including
wafer fabrication, packaging, testing, and quality assurance. The process is
characterized by the following parameters:

EnhancementDepletion MESFET Technology
NMOS-like Structure
Simple - 9 Mask Steps
Three levels of metal interconnect (Aluminum Metalization)
1.0 p m Process Lithography
Self-aligned Gates
Excellent Threshold Voltage Control
High Level of Integration (20K Gates)
High Speed Packages

The Vitesse process electrical parameters are as follows:

Gate Delay = 120 psec
Metal Line Delay = 60 psedmm of metal
Fan-Out Delay = 35 psedf.0.
Clock to Q Delay = 420 psec
Power Dissipation = 0.4 mWatt/gate

Vitesse currently offers several tools for custom designs. By fourth quarter 1988
these tools will include a library of 45 Macro Cells (SSIMSI) and 6 Mega Cells
(LSI components). By third quarter 1989 they project having 250 Macro Cells, 10
Mega Cells and Compiled Cells (data path unit, state machine, & RAM).

65

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems 8 Processes Engineering Corporation

Vitesse has developed a custom SPICE model of their process to assist in device
design. Vitesse supports Sun, DEC VAX, Apollo and other major engineering
workstations.

Vitesse has a 45,000 square foot fabrication facility, a Class 10 clean room, and
over $lM in high speed test equipment.

6.1.3 TriQu.int Semiconductor, Inc.

TriQuint Semiconductor, Inc. offers a wide range of both digital and analog GaAs
foundry services. TriQuint offers a 1 pm Enhancement'Depletion Mode process
for high level integration.

TriQuint offers a Q-LOGIC Standard Cell Design capability, including a large
library of macros. TriQuint standard cells are capable of speeds of up to 2 - 3 GHz.
Input and output cells are available for ECL, "L, and CMOS compatibility.

Two logic families are available, ZFL (Zero-diode FET Logic) and SCFL (Source
Coupled FET Logic). Currently, 6000 equivalent gates are available in the
standard cell. With SCFL cells, gate delays are 65 psec, and with ZFL cells, gate
delays are 150 psec. Loading delays for SCFL and ZFL are 13 psedfan out (or 40
psedmm of wire) and 7 psedfan out (or 50 psedmm of wire), respectively. The
maximum toggle rate for SCFL Flip Flops is 2 GHz, and 1 GHz for ZFL Flip Flops.

SCFL dissipates 2.7 mWatt/gate and ZFL dissipates 0.8 mWatt/gate (2-input NOR).

Multilayer ceramic packages, of up to 132 pins are available.

Other TriQuint services include layout and verification, testing, and packaging.

66

I
I
' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

?
I

SPEC
Systems & Processes Engineering Corporation

6.1.4 Other Foundry Sources

6.1.4.1 Texas Instruments

Texas Instruments is currently developing a 32-bit GaAs microprocessor for the
Defense Advanced Research Project Agency (DARPA). The processor has
separate instruction and data memory (Harvard architecture) and a floating point
coprocessor (now approximately 80% complete). The processor is designed to
execute the MIPS standard instruction set.

Texas Instrument's processor is a 12,000 gate, full custom design implemented in
HI2L. Texas Instruments also offers GaAs gate arrays of up to 13,000 gates.

6.1.4.2 McDonneU Doughs corporation

Like Texas Instruments, McDonnell Douglas is also a DARPA pilot line for GaAs
production. McDonnell Douglas uses a low power Junction FET (JFET) GaAs
process. This process does not have the speed capability of TI'S HI2L process, but
is much more suitable for implementation of on-board RAM.

McDonnell Douglas has also implemented a MIPS Instruction Set Architecture
(ISA) compatible RISC microprocessor.

6.1.4.3 Rockwell International Coxporntion

Rockwell recently developed an 8-bit slice using depletion mode technology. This
slice includes 32 registers, and was implemented in approximately 1200 gates.
Discussions with Rockwell indicate that they have not yet developed an E D
process.

6 2 CustomvsStandardCellvsGateArrayApp~ch

After assessment of the design requirements, particulary gate count, SPEC has
determined that a standard cell approach is the most cost effective and realizable
design approach. Integration densities to 20,000 gates are currently realizable
using Vitesse standard cell integrated circuits.

SPEC has developed estimates of the number of gates and pins required to
implement the processor, floating point coprocessor, and the communications
coprocessor. The estimates are detailed in Table 6-1. The RISC processor should
require approximately 18,000 gates in a 128+ pin package. The floating point
coprocessor should require approximately 19,000 gates in a 112+ pin package,

67

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' 13312
5 1 2

2000
2 5 6

1000
2 0 0
1 2 8
2 5 6
2 5 6

1 7 9 2 0

SPEC
Systems & Processes Engineering Corporation

3
3
6

1 2

Device Element

4096
1 2 8

2500
1024
2484
3508
2228
2228

128
2 5 6
2 5 6

1 8 8 3 6

4096
6 4 0

2000
2048
6048

6 4

2 5 6
2 5 6

15536-

128

Vocessor
Register File
Status Registers
Instruction Decode & Operation
Program Counters
Arithmetic & Logic Unit
Shift Unit
Address Bus
Instruction/Data Bus
Misc. Control, Power. & Ground Signals

~

Zloating Point Coprocessor
Register File
State Register
Instruction Decode & Operation
Floating Point Addressllnstruction Queue
Bit-Serial Multiplication Unit
Bit-Serial Division Unit
Bit-Serial Addition Unit
Bit-Se rial Subtraction Unit
Address Bus
InstructionlData Bus
Misc. Control, Power, & Ground Signals

bray Communications Coprocessor
Register File
Status Registers
Instruction Decode & Operation
Communications Address/lnstruction Queue
Bit-Serial Communication Units
Node Address
Address Bus
Instruction/Data Bus
Misc. Control, Power, & Ground Signals

Gates 7

Table 6-1 Device Gate Count and Pin Count Estimates.

68

3
3
4

1 1

3
1
3
3
3

1 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

while the communications coprocessor should require approximately 15,500 gates
in a 144+ pin package.

6.3 Demonstration Unit Design

As delineated in Figure 6-2, the Phase I1 development program will consist of the
parallel development of the three SPARC units, the processor, FPC, and ACC.
Development will proceed in parallel on all three units, with priority initially on
the basic RISC processor, followed by the communications coprocessor (required
to implement the array), and subsequently the floating point coprocessor.

6.3.1 Hardware Implementation

A hardware demonstration unit will be designed on a 9-U VMEbus card,
compatible with a Sun Microsystems workstation. The demonstration hardware
will consist of 16 processor nodes, organized as two sets of eight nodes. The nodes
will be interconnected to execute a length-64 Block DFT. A diagram of the
proposed hardware is shown in Figure 6-3.

Each processor will have a minimum of 4 Kbytes of high speed dual-ported RAM
for communication with the control processor (the workstation CPU). The
demonstration unit will be designed to facilitate downloading of software to the
RISC processors.

The demonstration unit will be designed to allow reconfiguration of the array by
jumpers on the printed circuit board.

6.3.2 SoftwareDevelopment

Software development for the SPARC systolic array processor will occur on a Sun
Series-4 workstation, which is based on the SPARC architecture. Sun offers a
wide range of software development tools, including compilers, symbolic
debuggers, and other utilities. Array processor code can be partially debugged on
the workstation.

SPEC will develop a length-64 DFT software package to demonstrate the
capabilities of the array processor. Other signal processing algorithms (as
described in this report) will be implemented on the SPARC systolic array
processor, per customer direction.

69

SPEC
Systems & Processes Engineering Corporation

SPARC
FPC

GaAs -

I
I

I
I
I

I
I

Figure 6-2 Phase I1 Development Program Objectives.

70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I

SPEC
Systems & Processes Engineering Corporation

VMEbus

Figure 6-3 VMEbus (9U) Compatible GaAs Systolic Array DFT Processor.

71

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

7.0 ConclusionS

SPEC has developed an innovative array processor architecture for computing
Fourier transforms and other commonly used signal processing algorithms. The
architecture described in this report is designed to extract the highest possible
array performance from state-of-the-art GaAs technology. SPEC'S architectural
design includes a high performance RISC processor implemented in GaAs, along
with a Floating Point Coprocessor and a unique Array Communications
Coprocessor, also implemented in GaAs technology. Together, these data
processors represent the latest in technology, both from an architectural and
implementation viewpoint.

SPEC has examined numerous algorithms and parallel processing architectures
to determine the optimum array processor architecture. SPEC has developed an
array processor architecture with integral communications ability to provide
maximum node connectivity. The Array Communications Coprocessor embeds
communications operations directly in the core of the processor architecture.

A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial
arithmetic units, operating at very high frequency, to perform floating point
operations. These Bit-Serial devices reduce the device integration level and
complexity to a level compatible with state-of-the-art GaAs device technology.
Operating at clock frequencies in excess of 1 GHz, these Bit-Serial units compare
favorably to parallel units implemented in silicon technology, while providing
inherent radiation hardness and superior speed-power product of GaAs.

SPEC has selected Sun Microsystems' Scalable Processor ARChitecture (SPARC)
as a basis for the high speed RISC processor. The SPARC is ideally suited for
array processor applications, with a large register set, efficient instruction set,
and simple implementation. The SPARC RISC processor has previously been
implemented in a silicon gate array, with the design requiring less than 20,000
gates. This compares very favorable to other RISC processor implementations,
which have required many times the device complexity.

SPEC has selected Vitesse Semiconductor's enhancementidepletion mode process
for design implementation. Vitesse's GaAs foundry is now offering Standard Cell
design capability up to 20,000 gates, which offers the best cost and performance
alternative, and ensures success in a Phase I1 development activity.

In selecting SPARC basis for the processor, SPEC has ensured a high level of
software support and design activity for successfid commercialization of the
product in Phase 111. At the end of Phase 11, SPEC will have demonstrated both a
high performance DFT array processor architecture and GaAs RISC design.

72

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

1.
complex Fourier Series" Math. Comput.

J. W. Cooley and J. W. Tukey, "An Algorithm for the machine calculation of
297 (1965).

2.
transformation" IEEE Trans. Acoust., Speech, Signal Processing x 2 6 4 (1976).

C. M. Rader and N. M. Brenner, "A new principle for fast Fourier

3.
transform" IEEE Trans. Acoust., Speech, Signal Processing

R. D. Preuss, Very fast computation of the radix-2, discrete Fourier
595 (1982).

4.
number of multiplications lower than 2n+l" Electron. Lett. 2p 690 (1984).

P. Duhamel and H. Hollmann, "Existence of a 2n FIT algorithm with a

5.
reduced number of operations" Signal Processing 6 267 (1984).

M. Vetterli and H. J. Nussbaumer, "Simple FFT and DCT algorithms with

6.
algorithms" in Proc. IEEE Int. Cor$ ASSP, Tampa, FL, (Apr. 1985).

M. T. Heideman and C. S. Burrus, "Mdtiply/add tradeoffs in length-2n FFT

7.
IEEE Trans. Acoust., Speech, Signal Processing

---, "On the number of multiplications necessary to compute a length-2n DFTI
91 (1986).

8. a 175 (1978).
S. Winograd, "On computing the discrete Fourier transform" Math. Comput.

9.
Math. a 83 (1979). ---, "On the multiplicative complexity of the discrete Fourier transform" Adv.

10. C.S. Burrus and P. W. Eschenbacher, "An in-place in-order prime factor FFT
algorithm" IEEE Trans. Acoust., Speech, Signal Processing 29.806 (1981).

11. R. Kanaresan and P. K. Gupta, "A prime factor FIT algorithm with real
valued arithmetic" Proc. IEEE 1241 (1985).

12. K. M. Cho and G. C. Temes, "Real-factor FFT algorithms" in Proc. IEEE
ICASSP 634 (1982).

13. Z. Wang, "Fast algorithms for the discrete W transforms and the discrete
Fourier Transform" IEEE Trans. Acoust., Speech, Signal Processing a 803
(1984).

73

I
I
I
I

I
I

I
I

I
1
I
I

SPEC
Systems & Processes Engineering Corporation

14. J. B. Martens, "Recursive cyclotomic factorization - A new algorithm for
calculating the discrete Fourier transform" IEEE Trans. Acoust., Speech, Signal
Processing a 750 (1984).

15. ---, "Discrete Fourier transform algorithms for real valued sequences" IEEE
Trans. Acoust., Speech, Signal Processing Z 390 (1984).

16. P. Duhamel and H. Hollmann, "Split-Radix FFT algorithm", Electron. Lett.
212 14 (1984).

17. H. V. Sorensen, M. T. Heideman, and C. S. Burrus, 'I On Computing the
Split-Radix FFT" IEEE Trans. Acoust., Speech, Signal Processing a, 152 (1986).

18. P. Duhamel, "Implementation of 'split-radix' FFT algorithms for complex,
real, and real-symmetric data" IEEE Trans. Acoust., Speech, Signal Processing

285 (1986).

19. H. Johnson and C. S. Burrus, "Twiddle factors in the radix-2 FFT" in Proc.
1982 Asilomar Conf Circuits Syst., Comput. 413 (1982).

20. F. J. Harris, "On the use of windows for harmonic analysis with the discrete
Fourier transform" Proc. IEEE 51 (1978).

21. K. M. M. Prabhu and H. Renganathan, "Optimum binary windows for
discrete Fourier transforms" IEEE Trans. Acoust., Speech, Signal Processing
216 (1986).

22. R. N. Bracewell, "Discrete Hartley transform" J. Opt. SOC. Amer.
(1983).

1832

23. ---, "The fast Hartley transform" P m . IEEE 1010 (1984).

24. H. J. Meckelburg and D. Lipka, "Fast Hartley transform algorithm" Electron.
Lett. 21 341 (1985).

25. H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, "On
computing the discrete Hartley transform" IEEE Trans. Acoust., Speech, Signal
Processing a 1231 (1985).

26. J. Prado, "Comments on the fast Hartley transform" Proc. IEEE
(1985).

1862

I

74

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

27. G. E. J. Bold, "A comparison of the time involved in computing fast Hartley
and fast Fourier transforms" Proc. IEEE a 1863 (1985).
28. K. H. Tzou and T. R. Hsing, "A study of the discrete Hartley transform for
image compression applications" P m . S H E 534 1985.
29. H. S. Hou, "The fast Hartley transform algorithm" IEEE Trans. Comput. X
147 (1987).

30. S. C. Pei and J. L. Wu, "Split-radix fast Hartley transform" Electron. Lett. 22
26 (1986).

31. 0. Buneman, "Conversion of FFTs to fast Hartley transforms" SIAM J. Sci.
Stat. Comput. 1 624 (1986).
32. H. Malvar, "Fast computation of discrete cosine transform through fast
Hartley transform" Electron. Lett. 22 352 (1986).

33. N. Ahmid, T. Natarajan, and K. R. Rao, "Discrete cosine transform" IEEE
Trans. Comput. C-23 88 (1974).

34. J. M. Jover and T. Kailath, "A Parallel Architecture for Kalman Filter
Measurement Update" IFAC 9th World Congress, Budapest, Hungary 1005 (1984).

35. E. E. Swartzlander, Jr. and G. Hallnor, "Fast Transform Processor
Implementation" Proc. IEEE ICASSP, 25 (1984).

36. H. Renganathan and K. M. M. Prabhu, "Improving FFT Efficiency in High
Speed Applications" Digital Signal processing - 84, North-Holland 101 (1984).

37. P. Chow, A. G. Vranesic, and J. L. Yen, "A Pipelined Distributed Arithmetic
PFFT Processor" IEEE Trans. Comp., C-32 1128 (1983).

38. M. G. X. Fernando, A. G. Constantinides, and T. E. Curtis, "Considerations
for the Hardware Implementation of Fast DFT Algorithms" Digital Signal
Processing - 84, North-Holland 207 (1984).

39. D. J. Spreadbury and T.M. Rees-Roberts, Prime Radix Fourier Transform -
From Algorithm to Silicon Implementation" Digital Signal Processing - 84, North-
Holland 279 (1984).

75

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SPEC
Systems & Processes Engineering Corporation

40. J. S. Ward, J. V. McCanny, D. Phil, and J. G. McWhirter "Bit-Level Systolic
Array Implementation of the Winograd Fourier Transform Algorithm" IEE Proc.

473 (1985).

41. G. Bongiovanni, "Two VLSI Structures for the Discrete Fourier Transform"
IEEE Trans. Comp. C-32 750 (1983).

42. G. Bongiovanni, "A VLSI Network for Variable Size FFTs" IEEE Trans.
Comp. C-32 756 (1983).

43. W. Siu, M. Phil, and A. G. Constantinides, Very Fast Discrete Fourier
Transform using Number Theoretic Transform" IEE Proc. u 201 (1983).
44. B. Arambepola, "Discrete Fourier Transform Processor based on the Prime
Factor Algorithm" IEE P m . 138 (1983).

45. T. Wiley, R. Chapman, H. Yoho, T. S. Durrani, and D. Preis, "Systolic
Implementations for Deconvolution, DFT and FFT" IEE Proc. 132 466 (1985).

46. C. D. Thompson, "Fourier Transforms in VLSI" IEEE Trans. Comp. C-32
1047 (1983).

47. G. A. Doodlesack, M. Gray, B. L. Johnson, C. L. Nowacki, and J. J. Vaccaro,
VLSI Chip Design for QRNS-Based DFTs" IEEE 1118 (1987).

48. J. G. Delgado-Frias and I. Contreras, "WASP - A WSI Bit-Serial Processor"
lEEE 164 (1987).

49. F. F. Yassa, J. R. Jasica, R. I. Hartley, and S. E. Noujaim, "A Silicon
Compiler for Digital Signal Processing: Methodology, Implementation, and
Applications" P m . IEEE E 1272 (1987).
50. J. T. Burkley, "MPP VLSI Multiprocessor Integrated Circuit Design" PE
Circuit Design (unknown).

51. S. G. Morton and E. Abreu, "The Dynamically Reconfigurable CAP Array
Chip I" IEEE J. Solid-state Circuits SC-21820 (1986).

52. S. G. Smith, M. S. McGregor, and P. B. Denyer, "Techniques to Increase the
Computational Throughput of Bit-Serial Architectures" IEEE 543 (1987).

53. J. V. McCanny, D. Phil, and J. G. McWhirter, "Bit-Level Systolic Array
Circuit for Matrix Vector Multiplication" IEE Proc. u 125 (1983).

76

SPEC
I
I Systems & Processes Engineering Corporation

54. R. Gnanasekaran, "On a Bit-Serial Input and Bit-Serial Output Multiplier"
IEEE Trans. Comp. C-32 878 (1983). I
55. P. M. Chau, K. C. Chew, and W. H. Ku, "A Bit-Serial Floating-point Complex
Multiplier-Accumulator for Fault-Tolerant Digital Signal Processing Arrays"
lEEE 483 (1987).

I
I

77

